bet亚洲官网手机版-威尼斯城所登入网址-首页

服务热线

021-51619676
网站导航
企业公告
当前位置:bet亚洲官网手机版 > 企业公告 >

索式提取器不考虑摩擦时机构的动态静力分析

时间:2020-04-18 18:14     浏览:

例 #"! 在图 !"#, 所示的颚式破碎机中,已知各构件的尺寸、索式提取器重量和对其质 心轴的转动惯量,以及矿石加于活动颚板 , 上的阻力 #- 。设原动件 # 的角速度 为!# ,其重力可忽略不计,试求作用在原动件 # 上的点 ’ 并沿 (— ( 方向的平衡 力以及各运动副反力。 解 #)作机构的运动简图、速度多边形和加速度多边形 用选定的长度比例尺") 、速度比例尺"* 、加速度比例尺"& 和角加速度比例 尺"# 作出机构运动简图、速度多边形和加速度多边形,如图 !"#,.、/、0 所示。 ,)确定各构件的惯性力和惯性力偶矩 作用在构件 , 上的惯性力 #$, 和惯性力偶矩 %$, 为 #$, ’ 1 +, &!, ’ 1 ,, -"& .+ /, + %$, ’ 1 0!,#, ’ 1 0!, &* 12 )12 ’ 1 0!,"# 32 3+ )12 式中 )12 为 1、2 两点之间的实际距离。 将通过质心 !, 的 ,, 和作用在构件 , 上的 %$, 合并成一个总惯性力 #+$, ,其 大小和方向仍为 #$, ,但作用线从质心 !,


 偏移一实际距离 4$, ,其值为 4$, ’ %$, #$, 同样,对于构件 ! 有 #$! ’ 1 +! &!! ’ 1 ,! -"& .+ /! + %$! ’ 1 0!!#! ’ 1 0!! &* 1 )15 ’ 1 0!!"# 3#3+ )15 3, 第!章 平面机构的动力分析 图 !"#$ 机构的动态静力分析 !"! % #"! $"! !)动态静力计算 (&)求构件 $、!(为一个杆组)中各运动副中的反力 !"# 不考虑摩擦时机构的动态静力分析 ’! 以构件 ! 和构件 " 组成的杆组作为示力体,将其运动副中的反力分别分解 为沿构件轴线和垂直于构件轴线的两个分力,则考虑构件 ! 的平衡时,由!!" # $ 得 #!!$%! % &!& $%& ’ &(’!!$%) ’ &* +)!!$ "( # $ 则 &* +)! # #! %! % && %& ’ &(’! %) "( 如果上式等号右边为正值,则表示假定的 !* +)! 的指向是对的;反之,如果是 负,则表示 !* +)! 的实际指向与图示的方向相反。 同理,当考虑构件 " 的平衡时,由!!" # $ 得 #"!$%, ’ &(’"!$%" ’ &* +",!$ ") # $ 则 &* +," # #" %, ’ &(’" %" ") 所得值的正负及 !* +," 的指向与上述 !* +)! 相似。 以整个杆组作为示力体,由力平衡条件!!" # $ 得 !- +)! % !* +)! % !(’! % !& % "! % "" % !(’" % !* +," % !- +," # $ 上式中只有 !- +)! 和 !- +," 的大小未知,故可由力多边形求出。如图 ".)!/ 所示,选 定力的比例尺!& ( 0122),从任意点 * 出发连续作矢量" *+、" +,、" ,-、" -.、" ./、"/0和 " 0’,分别代表力 !* +)! 、!(’!、!& 、#! 、#" 、!(’"和 !* +," ,然后由点 * 和 ’ 各作直线*1和’1 代表 !- +)! 和 !- +," 的方向线,相交于 1 点。则矢量" 1+和" 01便分别代表总反力 !+)! 和 !+," ,其大小为 &+)! #!& 1+, &+," #!& 01 又由构件 ! 的平衡条件!! # $,即 !+)! % !’! ( % !& % "! % !+"! # $ 可知矢量 .1 " 代表 !+"! ,其大小为 &+!" #!& .1 (3)求作用在构件 ) 上的平衡力和运动副反力 如图 ".)!4 所示,因 !+!) # ’ !+)! ,故 !+)! 已知。当考虑构件 ) 的平衡时,由 !! # $,得 !3 % !+!) % !+,) # $ 该三力应交于一点,故如图 ".)!4 所示,反作用力 !+,) 的作用线应通过直线 2— 2 与 !+!) 的交点 3。这样,上式中只有力 !3 和 !+,) 的大小未知,故可作力的多边 形求出。如图 ".)!/ 所示,矢量" +1代表力!+!) 。从点 1 和 + 作直线14和+4各平行图 5, 第!章 平面机构的动力分析 !"#$%中的 !" 和 #— #,分别代表力 !&’# 和 !( 的作用线,相交于点 $,则矢量! %$和 ! $&便分别代表力 !&’# 和 !( ,其大小为 ’&’# )!’ %$ ’( )!’ $& 平衡力 !( 的指向与"# 一致。 !"# 机械的效率和自锁 !"#"$ 机械的效率 在机械运转时,设作用在机械上的驱动功


(输入功)为 (* ,有效功(输出功) 为 (+ ,损耗功为 (% 。则在机械变速稳定运动的一个运动循环或匀速稳定运动 的任一时间间隔内,输入功等于输出功和损耗功之和,即 (* ) (+ , (% (!"#!) 输出功与输入功的比值,反映了输入功在机械中的有效利用程度,称为机械 效率,通常用#表示,即 #) (+ (* (!"#’) 或 #) (+ (* ) (* - (% (* ) # - (% (* (!"#.) 机器的机械效率也可用驱动力和有效阻力等的功率来表示。将式(!"#.)的 分子、分母同时除以作功的时间后,即得 #) )+ )* ) # - )% )* (!"#/) 式中,)* 、)+ 、)% 分别为机器在一个运动循环内的输入功率、输出功率和有害功 率的平均值。 图 !"#! 机械传动示意图 从式(!"#.)和式(!"#/)可知,因为损 耗功 (% 或损耗功率 )% 不可能为零,所 以机械效率# 总是小于 # 的。而且,(% 或 )% 越大,机械效率就越低。因此,在 设计机械时,为了使其具有较高的机械 效率,应尽量减小机械中的损耗,主要是 减小摩擦损耗。 机械效率也可用力的比值的形式来 !"# 机械的效率和自锁 0. 表示。在图 !"#! 所示的机械传动中,设 !$ 为驱动力,!% 为相应的有效阻力,而 "$ 和 "% 分别为 !$ 和 !% 的作用点沿该力作用线方向的速度,于是根据式 (!"#&)可得 !’ !$( !$) ’ !% "% !$ "$ (!"#*) 如假设该传动装置为一不存在有害阻力的理想机械,设 !$+ 为对应于同一 有效阻力 !% 的理想驱动力,或 !%+ 设为对应于驱动力 !$ 的理想有效阻力。因 为对理想机械来说,效率!+ ’ #,所以由式(!"#*)得 !+ ’ !% "% !$+ "$ ’ !%+ "% !$ "$ ’ #,即 "% "$ ’ !$+ !% ’ !$ !%+ 将上式代入式(!"#*)得 !’ !$+ !$ ’ !% !%+ (!"#,) 同理,如设 #) 和 #)+ 分别为实际的和理想的驱动力矩,#( 和 #(+ 分别为实 际的和理想的有效阻力矩,则可得 !’ #)+ #) ’ #( #(+ (!"#-) 对于复杂机器或机组效率的具体计算方法,按连接方式可分为以下三种情 况: (#)串联 图 !"#. 所示为 $ 个机器依次串联而成的机组,设各个机器的效率分别为 !# ,!/ ,.,!$ ,则有 !# ’ %# %) ,!/ ’ %/ %# ,.,!$ ’ %$ %$ 0 # 又 %$ %) ’ %# %) %/ %# . %$ %$ 0 # 所以串联机组的总效率!为 !’ %$ %) ’!#!/ .!$ (!"/+) 上式表明:串联机组的总效率等于组成该机组的各个机器的效率的连乘积。 图 !"#. 机构或机器的串联 (/)并联 如图 !"#& 所示的由 


$ 个机器互相并联的机器,总的输入功 %) 为 *1 第!章 平面机构的动力分析 !! " !# $ !% $ . $ !" 总的输出功 !& 为 !& " !#’ $ !%’ $ . $ !"’ "!# !# $!% !% $ . $!"!" 所以并联机组的总效率!为 !" !& !! "!# !# $!% !% $ . $!"!" !# $ !% $ . $ !" (()%#) 上式表明:并联机组的总效率不仅与各机器的效率有关,而且与机器所传递 的功率有关。设在各个机器中,效率最高者和效率最低者的效率分别用!*+, 和 !*-. 表示,则!*-. /!/!*+, 。又如果各个机器的效率均相等,则不论数目 " 为多 少,各机器传递的功率如何,总效率总等于机组中任一机器的效率。 (()混联 如图 ()#0 所示为兼有串联和并联的混联机组。为了计算其总效率,可先将 输入到输出的路线弄清,然后分别按各部分的连接方式,参照式(()%1)和(()%#) 的方法,推导出总效率的计算公式。如图所示,设机组串联部分的效率为!’ ,并 联部分的效率为!2 ,则机组的总效率为 !"!’!2 图 ()#3 机构或机器的并联 图 ()#0 机构或机器的混联 !"#"$ 机械的自锁 由于任何实际机械工作时必定会有一部分损耗功,故由式(()#3)可知机械 的效率总是小于 #。如果机械上的有害阻力所造成的损耗功总是等于输入功, 即 !! " !4 ,则!" 1。在这种情况下,如果机械原来是运动的,则由于输入功和 损耗功的平衡而维持等速运动,但不作任何有用的功,即输出功 !& " 1,机械的 !"# 机械的效率和自锁 55 这种运转成为空转。如果机械原来就是静止的,则不论驱动力有多大,都不能使 机械发生运动,这种现象叫机械的自锁。如果作用在机械上的有害阻力所作的 损耗功总是大于输入功,即 !! " !# ,则由式($%&’)可知!" (。此时,全部驱动 力所作的功尚不足以克服损耗功。所以,原来运动着的机械将迅速减速直至停 止,原来是静止的则保持静止不动,该机械必自锁。因此,从机械效率的角度来 看,机械自锁的条件为 !!( ($%))) 要注意的是,式中!* ( 是有条件的自锁,即机械必须原来就静止不动。这种自 锁一般不可靠。 当机械处于自锁时,就不能运动和作功了。这时,! 已没有一般效率的意 义,它只表明机械自锁的情况和程度。当!* ( 时,机械处于临界自锁状态;若! " (,则其绝对值越大,自锁越可靠。 "!"# 斜面传动的效率和自锁 如图 $%&+ 所示,滑块 & 置于升角为"的斜面 ) 上,!, 为作用在滑块 & 上的 铅垂载荷(包括自重),已知滑块与斜面之间的摩擦系数为 "。下面分析当滑块 等速上升和等速下降时,该斜面的效率和自锁条件。 $" 滑块等速上升 如图 $%&+- 所示,当滑块在水平驱动力 !. 的作用下等速上升时(称为正行 程),斜面 ) 作用于滑块 & 的运动副反力 !/)& 如图 $%&+0 所示。根据力平衡条件 可知 !. 1 !, 1 !/)& * ( 式中只有 !. 和 !/)& 的大小未知,故可作力三角形如图 $%&+0 所示。由此得所需 的水平驱动力 !. 的大小为 #. * #, 2-3("1#) ($%)$) 如果不考虑摩擦,则# * (,故可得理想驱动力为 #.( * #, 2-3"。由式($%&4)得 滑块等速上升时斜面的效率为 !* #.( #. * 2-3" 2-3("1#) ($%)5) %" 滑块等速下降 如图 $%&4- 所示,当滑块 & 沿斜面等速下降时(称为反行程),!, 变成了驱 动力,!.6变成了阻力。此时运动副反力 !/6)&的方向如图 $%&40 所示。根据力的 平衡条件可得 +4 第!章 平面机构的动力分析


图 !"#$ 斜面机构的受力分析 图 !"#% 斜面机构的受力分析 !&’ ( !) ( !*’+# , - 由力三角形(图 !"#%.)得力 !&’的大小为 !&’ , !) /01(!2") (!"+3) 如果不考虑摩擦,则" , -,故可得理想阻力为 !’&- , !) /01!。由式(!"#%)得滑 块等速下降时斜面的效率为 #, !&’ !’&-, /01(!2") /01! (!"+4) 值得注意的是,当滑块 # 下滑时,!) 为驱动力,而 !&’为阻抗力,其作用是阻 止滑块 # 加速下滑。又由式(!"+4)可知,如果!5",则 !&’为负,即其方向与图 示方向相反。说明在这种情况下,!&’也是驱动力,其作用是促使滑块 # 沿斜面 等速下滑。 当正行程时,如果!!!+ 2",则#"-,斜面机构将发生自锁。因正行程不应 自锁,故应使!5!+ 2"。当反行程时,如果!"",则#’"-,斜面机构将自锁。 #!"# 螺旋传动的效率和自锁 $6 !!"# 螺旋传动的效率和自锁 !"#"$ 矩形螺纹 图 !"#$% 所示为一矩形螺纹螺旋副,其中 # 为螺旋,& 为螺母。通常在研究 螺旋副的摩擦时,都假定螺母与螺旋间的作用力集中在其中径为 !& 的圆柱面 内;再假设螺母与螺旋间的作用力系集中在一小段螺纹上,把对螺旋副中摩擦的 研究简化为对斜面的研究。因此,如将该螺旋沿中径 !& 的圆柱面展开,该斜面 的升角即为螺旋在其中径 !& 上的螺纹升角!,则有 图 !"#$ 矩形螺纹的受力分析 ’%(!) " !!& ) #$ !!& (!"&*) 式中," 为螺纹的导程,# 为螺纹的头数,$ 为螺距。 如图 !"#$% 所示,螺母 & 上受到的轴向载荷为 %+ ,如果在螺母上加上一力 矩,使螺母逆向力 %+ 等速向上运动(对螺纹连接而言,相当于拧紧螺母),则如 图 !"#$, 所示,相当于在滑块 & 上加一水平力 %- ,使滑块 & 沿着斜面 # 等速向上 滑动。这样就可以根据式(!"&!)求出力 %- ,即 %- ) %+ ’%((!.")。力 %- 相当 于拧紧螺母时必须在螺旋中径处施加的圆周力,其对螺旋轴心线的力矩即为拧 紧螺母时所需的力矩 &/ ,所以有 &/ ) %- !& & ) !& & %+ ’%((!.") (!"&0) 01 第!章 平面机构的动力分析 不考虑摩擦时所需的理想力矩 ! 为 !!" # "$ $ #% &’(! 根据式()*+,)得其效率"为 "# !!" !! # &’(! &’((!-#) ()*$,) 当螺母顺着力 #% 的方向等速向下运动时(对螺纹连接来说,相当于拧松螺 母),相当于滑块 $ 沿着斜面等速下滑,则必须在螺旋中径处施加的圆周力 #./可 根据式()*$0)求出,即 #./ # #% &’((!1#)。因此,拧松螺母所需的力矩为 !!/ # #./ "$ $ # "$ $ #% &’((!1#) ()*)") 不考虑摩擦时所需的理想力矩 ! 为 !/!" # "$ $ #% &’(! 同理可求出其效率"/ 为 "/ # !!" / !!/ # &’((!1#) &’(! ()*)+) 式()*)+)中的力矩 !/!"为维持螺母在载荷 #% 的作用下等速松开的支撑力 矩,其方向仍与 !! 相同。如果要求螺母在载荷 #% 的作用下不会自动松开,则 必须使"/ !",即要满足反行程自锁的条件 !!# ()*)$) !"#"$ 三角形螺纹 如图 )*$" 所示,三角形螺纹与矩形螺旋副的区别在于螺纹间接触面的几何 形状不同。研究三角形螺纹的摩擦和效率时,可把螺母在螺杆上的运动近似地 看作楔形滑块沿斜槽面的运动,此时斜槽面的夹角为 $$($# ,"2 1%,%为牙形半 角)。所以有 $3 # $ 45($# $ 45((,"2 1%)# $ 674% 而 #3 # ’86&’( $3 # ’86&’( $ 674 ( ) % ()*))) 在矩形螺纹副的计算公式()*$9 : )*)$)中用#3 代替# 同样可以得到三角 形螺纹副 " 的各个对应公式。三角形螺纹的牙形半角%"",即 674%; +,因此 #3 总是大于#。所以,


三角形螺纹的摩擦力较大,效率较低,常用于连接,而矩 形螺纹常用于传动。 习 题 9+ 图 !"#$ 三角形螺纹的受力分析 小 结 机械总是在外力作用下进行工作的。机电产品的设计除了应满足工作所要 求的动作功能外,还必须具有良好的动力学性能。由于机械的动态性能将直接 影响机械的工作质量及其在市场上的竞争力,因此正日益受到设计者的重视。 机构的动力分析是机构设计中必须考虑的重要问题之一,它包括的内容十 分广泛。本章着重先容了已知作用在机构上外力的情况下,考虑各种不同的因 素如何求解作用在机构主动件上的平衡力或平衡力矩。 人类长期以来都在为提高机械效率而不懈努力。影响机械效率提高的主要 因素是机械中的损耗,而这种损耗主要是由摩擦引起的。因此,研究材料表面间 的摩擦机理,寻找减少摩擦的途径,对提高机械效率具有重要意义。因此,控制 摩擦、减少磨损、改善润滑性能已成为节约能源、提高机械效率、缩短机械维修时 间、提高产品质量的主要措施,正日益受到机械设计者的重视。另外本章还先容 了运动副中的摩擦、机械效率和机械的自锁的计算。 习 题 !"# 题 !"% 图所示楔形机构中,已知!&"& ’$(,有效阻力 !) & % $$$ *,各接触面的摩擦 系数 " & $"%+。试求所需的驱动力 !, 。 题 !"% 图 -# 第!章 平面机构的动力分析 !"# 在题 !"# 图所示机构中,已知 !$ % & ’’’ (,"#$ % &’’ )),"$% % "%& % #"#$ ,"%’ % "’& % "&! ,试求各运动副反力和平衡力矩 (* 。 题 !"# 图 !"! 在题 !"! 图所示曲柄滑块机构中,已知各构件的尺寸、转动副轴颈半径 ) 及当量摩 擦系数 *+ ,滑块与导路的摩擦系数 *。而作用在滑块 ! 上的驱动力为 !, 。试求在图示位置 时,需要作用在曲柄上沿 +— + 方向的平衡力 !* ( 不计重力和惯性力)。 题 !"! 图 !"$ 在题 !"- 图所示机构中,已知:+ % #$’ )),, % #’’ )),"#-# % &#. )),!, 为驱动 力,!/ 为有效阻力,.& % .! % #"0$ 12,.# % -"$3 12,/-# % ’"’&# 12·))# ,滑块 ! 以等速 0 % $ )45 向上移动,试确定作用在各构件上的惯性力。 !"% 在题 !"$ 图所示的悬臂起重机中,已知载荷 1 % $ ’’’ (,2 % - ),3 % $ ),轴颈直 径 4 % .’ )),径向轴颈和止推轴颈的摩擦系数均为 * % ’"&。设它们都是非跑合的,求使力臂 转动的力矩 (, 。 题 !"- 图 题 !"$ 图 !"& 题 !"6 图所示机构中,已知 + % &&’ )),, % -’ )),!& % -$7,"#$ % !’ )),"$% % 习 题 .! !" ##,!"# $ %&’& ##,!#$ $ () ##, !"%( $ %&’& ##;!" $ "* +,-./; &( $ ( 01, ’%( $ *’**) 01·##( 。设构件 & 上作用的有效阻力 (+ $ &** 2,!$( $ (* ##,试求各运动副中的反 力及需要加于构件 " 上的平衡力矩 )3 。 题 %’4 图 !"# 题 %’! 图所示为一楔块夹紧机构,其作用是在驱动力 (- 的作用下,使楔块 " 夹紧 工件 (。各摩擦面间的摩擦系数均为 *。试求: (")设 (- 已知,求夹紧力 (+ ; (()夹紧后撤掉 (- ,求滑块不会自行退出的几何条件。 题 %’! 图 题 %’) 图 !"$ 如题 %’) 图所示的缓冲器中,若已知各滑块接触面间的摩擦系统 * 和弹簧的压力 (5 ,试求: (")当楔块 (、% 被等速推开及等速恢复原位时力 (6 的大小; (()该机构的效率以及此缓冲器不发生自锁的条件。 !"% 如题 %’7 图所示,在手轮上加力矩 ) 均匀转动螺杆时,使楔块 + 向右移动并举起 滑块 ,,设楔角"$ "&8,滑块上 , 的载荷 (9 $ (* 02。螺杆为双头矩形螺纹,平均直径 -( $ %* ##,螺距 . $ ) ##。已知所有接触面的摩擦系数 * $ *’"&。若楔块 + 两端轴环的摩擦力矩 忽略不计,试求所需的力矩 )。 ): 



第!章 平面机构的动力分析 题 !"# 图 !"#$ 题 !"$% 图所示机组是由一个电动机经带传动和减速器,带动两个工作机 ! 和 "。 已知两工作机的输出功率和效率分别为:#! & ’ (),!! & %"*,#" & ! (),!! & %"+;每对齿轮 出动的效率!$ & %"#,,每个支承的效率!’ & %"#*,带传动的效率!! & %"#。求电动机的功率和 机组的效率。 题 !"$% 图 习 题 *, 第 ! 章 平面连杆机构及其设计 本章主要先容平面四杆机构的基本形式和演化方法,平面四杆机构的工作 特性,连杆机构的传动特点及其功能,平面四杆机构的图解法设计以及实验法和 解析法设计。 !"# 平面连杆机构的特点和应用 连杆机构应用十分广泛,它不仅在众多工农业机械和工程机械中得到广泛 应用,而且诸如调整雷达天线俯仰角大小的连杆机构、铸造车间振实式造型机工 作台的翻转机构、折叠伞的收放机构以及人体假肢等等,也都用到连杆机构。图 !"#$ 所示的铰链四杆机构,图 % 所示的曲柄滑块机构和图 & 所示的导杆机构是 最常见的连杆机构形式。它们的共同特点是,其原动件 # 的运动都要经过一个 不直接与机架相连的中间构件 ’ 才能传动到从动件 (。这些机构统称为连杆机 构。 图 !"# 连杆机构 连杆机构具有以下一些传动优点: (#)连杆机构中的运动副一般均为低副(故连杆机构也称低副机构),两运 动副元素为面接触,压强较小,故可承受较大的载荷;且有利于润滑,磨损较小; 此外,运动副元素的几何形状较简单,便于加工制造。 (’)在连杆机构中,当原动件的运动规律不变,可用改变各构件的相对长度 来使从动件得到不同的运动规律。 (!)在连杆机构中,连杆上各点的轨迹是各种不同形状的曲线(称为连杆曲 线),其形状还随着各构件相对长度的改变而改变,从而得到形式众多的连杆曲 线,大家可以利用这些曲线来满足不同轨迹的设计要求。 此外,连杆机构还可以很方便地用来达到增力、扩大行程和实现远距离传动 等目的。 连杆机构也存在如下一些缺点: (")由于连杆机构的运动必须经过中间构件进行传递,因而传递路线较长, 易产生较大的误差积累,同时,也使机械效率降低。 (#)在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的 惯性力难于用一般平衡方法加以消除,因而会增加机构的动载荷,所以连杆机构 不宜用于高速运动。 此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求, 但其设计却是十分繁难的,且一般只能近似地得以满足。正因如此,所以如何根 据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研 究的一个重要课题。 !"# 平面四杆机构的基本类型和演化 连杆机构是由若干刚性构件用低副连接所组成。在连杆机构中,若各运动 构件均在相互平行的平面内运动,则称为平面连杆机构;而平面四杆机构是平面 连杆机构的最基本类型。 !"#"$ 平面四杆机构的基本类型 在平面连杆机构中,结构最简单且应用最广泛的是由 $ 个构件所组成的平 图 $%# 铰链四杆机构 面四杆机构,其他多杆机构均可以看成 是在此基础上依次增加杆组而组成。本 节先容平面四杆机构的基本类型。 所有运动副均为转动副的四杆机构 称为铰链四杆机构,如图 $%# 所示,它是 平面四杆机构的基本类型。在此机构 中,构件 $ 为机架,直接与机架相连的构 件 "、! 称为连架杆,不直接与机架相连 的构件 # 称为连杆。能做整周回转的连 架杆称为曲柄(如构件 "),



仅能在某一角度范围内往复摆动的连架杆称为摇杆 (如构件 !)。如果以转动副相连的两构件能作整周相对转动,则称此转动副为 !"# 平面四杆机构的基本类型和演化 ’& 周转副(如转动副 !、");不能作整周相对转动的称为摆转副(如转动副 #、$)。 在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为 ! 种基本 形式。 !" 曲柄摇杆机构 在铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲 柄摇杆机构,图 "#! 所示的缝纫机踏板机构,图 "#" 所示的搅拌器机构均为曲柄 摇杆机构的应用。 图 "#! 缝纫机踏板机构 图 "#" 搅拌器机构 #" 双曲柄机构 在图 "#$ 所示的铰链四杆机构中,两连架杆均为曲柄,称为双曲柄机构。这 种机构的传动特点是当原动曲柄连续等速转动时,从动曲柄一般作不等速转动。 图 "#$ 双曲柄机构 图 "#% 所示为惯性筛机构,它利用双曲柄机 构 !"#$ 中的从动曲柄

推荐产品

Copyright ? 2010-2021 bet亚洲官网手机版-威尼斯城所登入网址-首页(www.juheliu.com)版权所有 |
本站仪器:索氏提取器 索氏抽提器 网站地图 sitemap.xml 排名优化支撑:三效SEO

bet亚洲官网手机版|威尼斯城所登入网址

XML 地图 | Sitemap 地图